17 research outputs found

    ISBE – set out for a Systems Biology Infrastructure for Europe

    Get PDF
    Systems biology requires the availability, co-ordination and simultaneous interaction of a large number of diverse facilities and activities. These cover an entire spectrum, from mathematical modelling, through biological, biomedical and clinical experiments, to dedicated technology development. The systems biology community needs close cooperation with data-generation groups and bioinformaticians to define a strategy for producing life-science data of sufficiently high quality for model generation. For each medical, biological or biotechnological problem addressed, the optimal combination of facilities and activities is likely to be different. The complexity of biological systems, and the diversity and dynamics of their processes, means that a full analysis is far too complex to be handled by a single entity, industry or country – a variety of specialist expertise and facilities are typically necessary to achieve results suitable for modelling. Systems-level approaches for tackling the complexity of life-science data provide a profound conceptual advance compared to reductionist biological research methods of the past. Rather than focusing on individual laboratories, specialising in a limited number of research technologies, the Infrastructure for Systems Biology in Europe (ISBE) will facilitate the synergistic application of a wide range of research techniques and technologies to problems of major medical and biotechnological importance

    Global transcriptional response of aspergillus niger to blocked active citrate export through deletion of the exporter gene

    Get PDF
    Aspergillus niger is the major industrial citrate producer worldwide. Export as well as uptake of citric acid are believed to occur by active, proton-dependent, symport systems. Both are major bottlenecks for industrial citrate production. Therefore, we assessed the consequences of deleting the citT gene encoding the A. niger citrate exporter, effectively blocking active citrate export. We followed the consumption of glucose and citrate as carbon sources, monitored the secretion of organic acids and carried out a thorough transcriptome pathway enrichment analysis. Under controlled cultivation conditions that normally promote citrate secretion, the knock-out strain secreted negligible amounts of citrate. Blocking active citrate export in this way led to a reduced glucose uptake and a reduced expression of high-affinity glucose transporter genes, mstG and mstH. The glyoxylate shunt was strongly activated and an increased expression of the OAH gene was observed, resulting in a more than two-fold higher concentration of oxalate in the medium. Deletion of citT did not affect citrate uptake suggesting that citrate export and citrate uptake are uncoupled from the system

    Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.

    Get PDF
    Many species of microalgae produce hydrocarbons, polysaccharides, and other valuable products in significant amounts. However, large-scale production of algal products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic engineering approaches will help to improve productivity, but the exact metabolic pathways and the identities of the majority of the genes involved remain unknown. Recent advances in bioinformatics and systems-biology modeling coupled with increasing numbers of algal genome-sequencing projects are providing the means to address this. A multidisciplinary integration of methods will provide synergy for a systems-level understanding of microalgae, and thereby accelerate the improvement of industrially valuable strains. In this review we highlight recent advances and challenges to microalgal research and discuss future potential.We acknowledge support from the EU FP7 project SPLASH (Sustainable PoLymers from Algae Sugars and Hydrocarbons), grant agreement number 311956.This is the accepted manuscript. The final version is available from Cell/Elsevier at http://www.sciencedirect.com/science/article/pii/S016777991400196

    Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions

    Get PDF
    Currently, there is no consensus regarding the mechanism underlying Aspergillus niger citrate biosynthesis and secretion. We hypothesise that depending on the experimental setup, extracellular citrate accumulation can have fundamentally different underlying transcriptomic landscapes. We show that varying the amount and type of supplement of an arginine auxotrophic A. niger strain results in transcriptional down-regulation of citrate metabolising enzymes in the condition in which more citrate is accumulated extracellularly. This contrasts with the transcriptional adaptations when increased citrate production is triggered by iron limitation. By combining gene expression data obtained from these two very distinct experimental setups with hidden Markov models and transporter homology approaches, we were able to compile a shortlist of the most likely citrate transporter candidates. Two candidates (An17g01710 and An09g06720m.01) were heterologously expressed in the yeast Saccharomyces cerevisiae, and one of the resultant mutants showed the ability to secrete citrate. Our findings provide steps in untangling the complex interplay of different mechanisms underlying A. niger citrate accumulation, and we demonstrate how a comparative transcriptomics approach complemented with further bioinformatics analyses can be used to pinpoint a fungal citrate exporter.grant in the framework of the BE-BASIC program F01.011 Transport processes in the production of organic acids by Aspergillus niger, and the WUR IPOP Systems Biology program KB-17-003.02.026 Genome-wide metabolic modelling and data integration of organic acid production in filamentous fungi

    Effects of b-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to clostridium difficile associated diarrhea

    Get PDF
    Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome.This work was supported by the ERANET Project PathoGenoMics program grant number 0315441A.Peer Reviewe

    Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease

    Get PDF
    ObjectiveInflammatory bowel diseases cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs which alter NF-κB signalling and may be repositioned for use in inflammatory bowel disease.DesignThe SysmedIBD consortium established a novel drug-repurposing pipeline based on a combination of in-silico drug discovery and biological assays targeted at demonstrating an impact on NF-kappaB signalling, and a murine model of IBD.ResultsThe drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic Clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. Clarithromycin's effects were validated in several experiments: it influenced NF-κB mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to LPS, and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids.ConclusionsThese findings demonstrate that in-silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of inflammatory bowel disease; and that further clinical assessment of clarithromycin in the management of inflammatory bowel disease is required

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Gut microbiota disturbance during antibiotic therapy: A multi-omic approach

    No full text
    It is known that the gastrointestinal tract (GIT) microbiota responds to different antibiotics in different ways and that while some antibiotics do not induce disturbances of the community, others drastically influence the richness, diversity, and prevalence of bacterial taxa. However, the metabolic consequences thereof, independent of the degree of the community shifts, are not clearly understood. In a recent article, we used an integrative OMICS approach to provide new insights into the metabolic shifts caused by antibiotic disturbance. The study presented here further suggests that specific bacterial lineage blooms occurring at defined stages of antibiotic intervention are mostly associated with organisms that possess improved survival and colonization mechanisms, such as those of the Enterococcus, Blautia, Faecalibacterium, and Akkermansia genera. The study also provides an overview of the most variable metabolic functions affected as a consequence of a β-lactam antibiotic intervention. Thus, we observed that anabolic sugar metabolism, the production of acetyl donors and the synthesis and degradation of intestinal/colonic epithelium components were among the most variable functions during the intervention. We are aware that these results have been established with a single patient and will require further confirmation with a larger group of individuals and with other antibiotics. Future directions for exploration of the effects of antibiotic interventions are discussed.The whole consortium was funded by the Spanish Ministry of Economy and Competitiveness and the Federal Ministry of Education and Research (BMBF) within the ERA NET PathoGenoMics2 program, grant number 0315441A. This work was further funded by grants BFU2008-04501-E, SAF2009-13032-C02–01, SAF2012-31187, and CSD2007-00005 from the Spanish Ministry of Economy and Competitiveness, Prometeo/2009/092 from Generalitat Valenciana (Spain), and AGL2006-11697/ALI. The authors gratefully acknowledge the financial support provided by the European Regional Development Fund (ERDF) and the European Union (FP7 project Systems medicine of chronic inflammatory bowel disease, Grant Agreement no. 305564). This work has been partially supported by the EVASYON study funded by the Spanish Ministry of Health and Consumption (Carlos III Institute of Health. FIS Grant PI 051579).Peer Reviewe

    SEVA 3.1: enabling interoperability of DNA assembly among the SEVA, BioBricks and Type IIS restriction enzyme standards

    No full text
    © 2020 The Authors.Robust synthetic biology applications rely heavily on the design and assembly of DNA parts with specific functionalities based on engineering principles. However, the assembly standards adopted by different communities vary considerably, thus limiting the interoperability of parts, vectors and methods. We hereby introduce the SEVA 3.1 platform consisting of the SEVA 3.1 vectors and the Golden Gate‐based ‘SevaBrick Assembly’. This platform enables the convergence of standard processes between the SEVA platform, the BioBricks and the Type IIs‐mediated DNA assemblies to reduce complexity and optimize compatibility between parts and methods. It features a wide library of cloning vectors along with a core set of standard SevaBrick primers that allow multipart assembly and exchange of short functional genetic elements (promoters, RBSs) with minimal cloning and design effort. As proof of concept, we constructed, among others, multiple sfGFP expression vectors under the control of eight RBSs, eight promoters and four origins of replication as well as an inducible four‐gene operon expressing the biosynthetic genes for the black pigment proviolacein. To demonstrate the interoperability of the SEVA 3.1 vectors, all constructs were characterized in both Pseudomonas putida and Escherichia coli. In summary, the SEVA 3.1 platform optimizes compatibility and modularity of inserts and backbones with a cost‐ and time‐friendly DNA assembly method, substantially expanding the toolbox for successful synthetic biology applications in Gram‐negative bacteria.Funding was provided by European Union’s Horizon2020 Research and Innovation Programme under grant agreement Nos. 635536 (EmPowerPutida) and 730976 (IBISBA) to V.A.P.M.d.S
    corecore